1 Stieltjes transform

From last time, we see that to prove the semicircle law, it suffices to show that for all z in the upper half-plane, $s_{n}(z) \rightarrow s_{\mu_{\mathrm{sc}}}(z)$ almost surely. By directly controlling $s_{n}(z)$, the Stieltjes transform method can be used to find the semicircle law, even if we do not know this law in advance.

Let $z=a+b i, b>0$. The main idea is to compare $s_{n}(z)$ to $s_{n-1}(z)$. Recall the Cauchy interlacing law, which says for any $n \times n$ Hermitian matrix with $(n-1) \times(n-1)$ minor A_{n-1}, one has $\lambda_{i}\left(A_{n}\right) \leq \lambda_{i}\left(A_{n-1}\right) \leq \lambda_{i+1}\left(A_{n}\right)$ for all $i=1, \ldots, n-1$. The following "alternating" sum

$$
\sum_{j=1}^{n-1} \frac{b}{\left(\lambda_{j}\left(M_{n-1}\right) / \sqrt{n}-a\right)^{2}+b^{2}}-\sum_{j=1}^{n} \frac{b}{\left(\lambda_{j}\left(M_{n}\right) / \sqrt{n}-a\right)^{2}+b^{2}}
$$

is bounded in n, because the function $x \mapsto \frac{b}{(x-a)^{2}+b^{2}}$ has finite total variation, and

$$
\left\{\lambda_{1}\left(M_{n}\right) / \sqrt{n}, \lambda_{1}\left(M_{n-1}\right) / \sqrt{n}, \ldots, \lambda_{n-1}\left(M_{n-1}\right) / \sqrt{n}, \lambda_{n}\left(M_{n}\right) / \sqrt{n}\right\}
$$

forms a partition. Note that the above sum is the imaginary part of

$$
\sqrt{n(n-1)} s_{n-1}\left(\frac{\sqrt{n}}{\sqrt{n-1}}(a+b i)\right)-n s_{n}(a+b i) .
$$

To see this, note that for instance

$$
\begin{aligned}
\sqrt{n(n-1)} s_{n-1}\left(\frac{\sqrt{n}}{\sqrt{n-1}}(a+b i)\right) & =\sqrt{n(n-1)} \frac{1}{n-1} \sum_{j=1}^{n-1} \frac{1}{\lambda_{j}\left(\frac{1}{\sqrt{n-1}} M_{n-1}\right)-\frac{\sqrt{n}}{\sqrt{n-1}}(a+b i)} \\
& =\sum_{j=1}^{n} \frac{1}{\lambda_{j}\left(M_{n-1}\right) / \sqrt{n}-(a+b i)} .
\end{aligned}
$$

The real part can be bounded similarly. Therefore, we see that

$$
\sqrt{n(n-1)} s_{n-1}\left(\frac{\sqrt{n}}{\sqrt{n-1}}(a+b i)\right)-n s_{n}(a+b i)=O(1)
$$

as $n \rightarrow \infty$. Also, note that the Stieltjes transform is smooth and $\frac{\sqrt{n}}{\sqrt{n-1}}-1=O(1 / n)$, and so $s_{n-1}\left(\frac{\sqrt{n}}{\sqrt{n-1}}(a+b i)\right)$ and $s_{n-1}(a+b i)$ are close, and hence we can conclude that

$$
\begin{equation*}
s_{n}(a+b i)=s_{n-1}(a+b i)+O\left(\frac{1}{n}\right) . \tag{1.1}
\end{equation*}
$$

In particular, we see that s_{n} is stable in n. Moreover, the right hand side depends only on the top left $(n-1) \times(n-1)$ minor, and it is independent of the n-th row and n-th column of the matrix.

We would like to know what s_{n} converges to. Recall McDiarmid's inequality:

Theorem 1.1. Let X_{1}, \ldots, X_{n} be independent random variables taking values in ranges R_{1}, \ldots, R_{n}, and let $F: R_{1} \times \cdots \times R_{n} \rightarrow \mathbb{C}$ be a function having bounded differences. That $i s$, there exist constants c_{1}, \ldots, c_{n} such that for all i,

$$
\left|F\left(x_{1}, \ldots, x_{n}\right)-F\left(x_{1}, \ldots, x_{i-1}, x_{i}^{\prime}, x_{i+1}, \ldots, x_{n}\right)\right| \leq c_{i}
$$

for all $x_{i}, x_{i}^{\prime} \in R_{i}$. Then for any $\lambda>0$, one has

$$
\mathbf{P}(|F(X)-\mathbf{E} F(X)| \geq \lambda \sigma) \leq C \exp \left(-c \lambda^{2}\right)
$$

for some $C, c>0$, where $\sigma^{2}:=\sum_{i=1}^{n} c_{i}^{2}$.
Note that the X_{j} 's above can be vectors of different lengths. Now, observe that (1.1) still holds if we resample the n-th row and the n-th column. Write $s_{n}^{\prime}(z)$ for the Stieltjes transform of the resampled matrix. Then by (1.1), we have $s_{n}(z)=s_{n}^{\prime}(z)+O(1 / n)$. Moreover, if we interchange the n-th row and j-th row, and also n-th column and j-th column, so that the matrix is still Hermitian and has the same distribution as before, the Stieltjes transform will remain the same. In other words, if we resample the j-th row (and hence the j-th column by symmetry), the change of $s_{n}(z)$ is at most $O(1 / n)$. Therefore, applying McDiarmid's inequality with $X_{j}=\left(\xi_{j, j}, \xi_{j, j+1}, \ldots, \xi_{j, n}\right)$, we have

$$
\mathbf{P}\left(\left|s_{n}(z)-\mathbf{E} s_{n}(z)\right| \geq c^{\prime} \lambda / \sqrt{n}\right) \leq C \exp \left(-c \lambda^{2}\right)
$$

Take $\lambda=n^{1 / 3}$ and apply Borel-Cantelli, we obtain that almost surely,

$$
s_{n}(z)-\mathbf{E} s_{n}(z) \leq O\left(n^{-1 / 6}\right)
$$

for all large n. Therefore, almost surely, $s_{n}(z)-\mathbf{E} s_{n}(z) \rightarrow 0$ for all z in the upper half-plane.
Thus, it remains to study what $\mathbf{E} s_{n}(z)$ tends to as $n \rightarrow \infty$. Note that

$$
\mathbf{E} s_{n}(z)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{E}\left[\left(\frac{1}{\sqrt{n}} M_{n}-z I_{n}\right)_{j, j}^{-1}\right]
$$

Again, interchanging the rows and columns so that the matrix M_{n} is still Wigner will not alter the distribution of the matrix. In particular, the (j, j)-th entry of $\left(\frac{1}{\sqrt{n}} M_{n}-z I_{n}\right)^{-1}$ has the same distribution as the (n, n)-th entry. Therefore,

$$
\mathbf{E} s_{n}(z)=\frac{1}{n} \sum_{j=1}^{n} \mathbf{E}\left[\left(\frac{1}{\sqrt{n}} M_{n}-z I_{n}\right)_{j, j}^{-1}\right]=\mathbf{E}\left[\left(\frac{1}{\sqrt{n}} M_{n}-z I_{n}\right)_{n, n}^{-1}\right] .
$$

So we need only to study the last entry of $\left(\frac{1}{\sqrt{n}} M_{n}-z I_{n}\right)^{-1}$, and we will use a formula based on the Schur complement.

References

[1] Tao, Terence. Topics in random matrix theory. Graduate Studies in Mathematics, 132. American Mathematical Society, Providence, RI, 2012. x+282 pp. ISBN: 978-0-8218-7430-1
[2] Thompson, Brady. Talk on $4 / 6$.

