
1 Stieltjes transform

From last time, we see that to prove the semicircle law, it suffices to show that for all z in the
upper half-plane, sn(z) → sµsc(z) almost surely. By directly controlling sn(z), the Stieltjes
transform method can be used to find the semicircle law, even if we do not know this law in
advance.

Let z = a+ bi, b > 0. The main idea is to compare sn(z) to sn−1(z). Recall the Cauchy
interlacing law, which says for any n×n Hermitian matrix with (n−1)×(n−1) minor An−1,
one has λi(An) ≤ λi(An−1) ≤ λi+1(An) for all i = 1, . . . , n− 1. The following “alternating”
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The real part can be bounded similarly. Therefore, we see that√
n(n− 1)sn−1

( √
n√

n− 1
(a+ bi)

)
− nsn(a+ bi) = O(1)

as n → ∞. Also, note that the Stieltjes transform is smooth and
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In particular, we see that sn is stable in n. Moreover, the right hand side depends only on
the top left (n− 1)× (n− 1) minor, and it is independent of the n-th row and n-th column
of the matrix.

We would like to know what sn converges to. Recall McDiarmid’s inequality:



Theorem 1.1. Let X1, . . . , Xn be independent random variables taking values in ranges
R1, . . . , Rn, and let F : R1 × · · · × Rn → C be a function having bounded differences. That
is, there exist constants c1, . . . , cn such that for all i,

|F (x1, . . . , xn)− F (x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci

for all xi, x
′
i ∈ Ri. Then for any λ > 0, one has

P(|F (X)− EF (X)| ≥ λσ) ≤ C exp(−cλ2)

for some C, c > 0, where σ2 :=
∑n
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2
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Note that the Xj’s above can be vectors of different lengths. Now, observe that (1.1) still
holds if we resample the n-th row and the n-th column. Write s′n(z) for the Stieltjes transform
of the resampled matrix. Then by (1.1), we have sn(z) = s′n(z) + O(1/n). Moreover, if we
interchange the n-th row and j-th row, and also n-th column and j-th column, so that the
matrix is still Hermitian and has the same distribution as before, the Stieltjes transform will
remain the same. In other words, if we resample the j-th row (and hence the j-th column
by symmetry), the change of sn(z) is at most O(1/n). Therefore, applying McDiarmid’s
inequality with Xj = (ξj,j, ξj,j+1, . . . , ξj,n), we have

P(|sn(z)− Esn(z)| ≥ c′λ/
√
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Take λ = n1/3 and apply Borel-Cantelli, we obtain that almost surely,

sn(z)− Esn(z) ≤ O(n−1/6)

for all large n. Therefore, almost surely, sn(z)−Esn(z)→ 0 for all z in the upper half-plane.
Thus, it remains to study what Esn(z) tends to as n→∞. Note that
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Again, interchanging the rows and columns so that the matrix Mn is still Wigner will not

alter the distribution of the matrix. In particular, the (j, j)-th entry of
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has the same distribution as the (n, n)-th entry. Therefore,
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So we need only to study the last entry of
(
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, and we will use a formula based

on the Schur complement.

2



References

[1] Tao, Terence. Topics in random matrix theory. Graduate Studies in Mathematics, 132.
American Mathematical Society, Providence, RI, 2012. x+282 pp. ISBN: 978-0-8218-
7430-1

[2] Thompson, Brady. Talk on 4/6.

3


	Stieltjes transform

