1 Stieltjes transform

From last time, we see that to prove the semicircle law, it suffices to show that for all z in the
upper half-plane, s,(z) — s,..(%) almost surely. By directly controlling s,(z), the Stieltjes
transform method can be used to find the semicircle law, even if we do not know this law in
advance.

Let z = a+ bi, b > 0. The main idea is to compare s,(z) to s,_1(z). Recall the Cauchy
interlacing law, which says for any n x n Hermitian matrix with (n—1) x (n —1) minor A,_1,
one has A\;(A4,) < N(An1) < Aip1(Ay) for alli = 1,...,n — 1. The following “alternating”
sum
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is bounded in n, because the function z — @ has finite total variation, and
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forms a partition. Note that the above sum is the imaginary part of
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To see this, note that for instance
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The real part can be bounded similarly. Therefore, we see that
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\/% = O(1/n), and
SO Sp_1 <\/\L(a + bz)) and s,_1(a + bi) are close, and hence we can conclude that
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In particular, we see that s, is stable in n. Moreover, the right hand side depends only on
the top left (n — 1) x (n — 1) minor, and it is independent of the n-th row and n-th column
of the matrix.

We would like to know what s,, converges to. Recall McDiarmid’s inequality:



Theorem 1.1. Let Xi,...,X, be independent random variables taking values in ranges
Ry,...,R,, and let F : Ry X --- x R,, — C be a function having bounded differences. That
18, there exist constants cq,...,c, such that for all i,

|F(21,. .. 20) — F(x1, .. 21, 2, i, 1) < ¢

for all z;,x, € R;. Then for any A > 0, one has
P(|F(X) —EF(X)| > M) < Cexp(—c\?)

for some C,c >0, where 0% := """ | 7.

Note that the X;’s above can be vectors of different lengths. Now, observe that still
holds if we resample the n-th row and the n-th column. Write s/ (2) for the Stieltjes transform
of the resampled matrix. Then by (L.I), we have s,(z) = s/,(z) + O(1/n). Moreover, if we
interchange the n-th row and j-th row, and also n-th column and j-th column, so that the
matrix is still Hermitian and has the same distribution as before, the Stieltjes transform will
remain the same. In other words, if we resample the j-th row (and hence the j-th column
by symmetry), the change of s,(z) is at most O(1/n). Therefore, applying McDiarmid’s
inequality with X; = (&;;,&;j+1,--.,&n), we have

P(|sn(2) — Es,(2)] > dA/v/n) < Cexp(—cA?).
Take A = n'/3 and apply Borel-Cantelli, we obtain that almost surely,
$n(2) — Bs,(2) < O(n~Y5)

for all large n. Therefore, almost surely, s,(z) —Es,(z) — 0 for all z in the upper half-plane.
Thus, it remains to study what Es,(z) tends to as n — oo. Note that
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Again, interchanging the rows and columns so that the matrix M, is still Wigner will not
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alter the distribution of the matrix. In particular, the (j,j)-th entry of <\/%7Mn — z[n>

has the same distribution as the (n,n)-th entry. Therefore,
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So we need only to study the last entry of (\%Mn — z[n> , and we will use a formula based
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on the Schur complement.
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