
1 The semicircle law

Recall that to the show the semicircular law, it remains to show that almost surely, for all
k ≥ 0, ∫
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xk dµ 1√
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Mn

(x)→
∫
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xk dµsc(x).

In fact, it suffices to show this convergence for any lacunary sequence, but let’s forget about
this for a moment.

Also recall that ∫
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We showed that when k is even, the term in Etr(Mn)k which dominates is Ck/2n(n−1) · · · (n−
k/2). For the remaining terms, if the class of cycle has j edges, where j < k/2, then we had
a bound nj+1Kk−2j, where K is an upper bound for ξi,j. Since we assumed that the entries
are uniformly bounded (one of the reductions), we can ignore the K-term and so the bound
becomes nj+1. As there are Ok(1) many classes, we obtain
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when k is even. When k is odd, it is even simpler. There is no non-crossing cycle of odd
length, and by the same computation we will see that
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when k is odd.
Suppose that k is even. For simplicity of notation we write

m
(n)
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n
Mn

(x).

Let ε > 0 and consider
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We can apply similar argument as before to show that

E

[
1

n
tr

[(
1√
n
Mn

)k]]2
= C2

k/2 +Ok(1/n),



which implies
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We also have ∣∣∣Em(n)
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Thus,
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In particular, for any lacuary sequence (nj),
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Therefore, by Borel-Cantelli, almost surely,
∣∣∣m(nj)

k − Ck/2
∣∣∣ < ε for all large j. That is, almost

surely, ∫
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(x)→ Ck/2.

For k odd, same argument shows ∫
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(x)→ 0.

It remains to show ∫
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xk dµsc(x) =

{
0 if k is odd,

Ck/2 if k is even.

The odd case is obvious. For k even,∫
R
xk dµsc(x) =

1

2π

∫ 2

−2
xk
√

4− x2 dx

=
1

π

∫ 2

0

xk
√

4− x2 dx

=
1

π

∫ 1

0

2k/2+1yk/2(1− y)1/2y−1/2 dy (x = 2
√
y)

=
2k/2+1

π

∫ 1

0

yk/2−1/2(1− y)1/2 dy

=
2k/2+1

π
B(k/2 + 1/2, 3/2)

=
1

k/2 + 1

(
k

k/2

)
= Ck/2.

2



2 Stieltjes transform

We can also prove the Wigner semicircle law using Stieltjes transform. It is similar (in
spirit) to using Fourier transform to prove the central limit theorem for sum of i.i.d. random
variables.

For any probability measure on R, we define the Stieltjes transform by

sµ(z) =

∫
R

1

x− z
dµ(x),

where z 6∈ supp(µ). We will write sn(z) = sµ 1√
n
Mn

(z). Note that
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(
1√
n
Mn − zI

)−1
is the normalized resolvent of Mn, and it plays an important role in the

spectral theory of Mn.
We first study some basic properties of Stieltjes transform.

• Obviously, sµ(z) = sµ(z). So it suffices to study sµ(z) on the upper half-plane.

• Im(sµ(z)) > 0 if Im(z) > 0.

Proof. Write z = a+ bi. Then

Im
1

(x− z)
= Im

1

(x− a)− bi
= Im

(x− a) + bi

(x− a)2 + b2
> 0.

• From above computation, one sees that

Im(sµ(a+ bi)) = πµ ∗ Pb(a),

where Pb is the Poisson kernel

Pb(x) =
1

π

b

x2 + b2
.

Since Poisson kernel is an approximation to the identity, we have Im(sµ(·+ bi))→ πµ
as b→ 0+ in weak∗-topology. Equivalently,

sµ(·+ bi)− sµ(· − bi)
2πi

→ µ

as b → 0+ in weak∗-topology. Note that this doesn’t require µ to be a probability
measure, but just a signed measure.
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• µn ⇒ µ if and only if sµn(z)→ sµ(z) for all z in the upper half-plane.

Proof. The only if part is easy. For the if part, write Fn for the distribution func-
tion of µn. By Helly’s selection theorem, for any subsequence of Fn, there exists a
further subsequence Fnk

and a nondecreasing, right continuous function F such that
limk→∞ Fnk

(x) = F (x) for all continuity points x of F . Write µF for the measure with
distribution function F . By the only if part, sµF (z) = sµ(z). Then by last property,

sµF (·+ bi)− sµF (· − bi)
2πi

→ µ

in weak∗, which implies µ = µF . Therefore, every subsequence of µn has a further
subsequence that converges to µ. That is, µn ⇒ µ.
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