
1 The semicircle law

Let’s recall that we want to show the semicircle law:

Theorem 1.1 (The Wigner semicircle law). Let Mn be the top left n × n minor of an
infinite Wigner matrix (ξi,j). Then the ESD’s µ 1√

n
Mn

converges almost surely to the Wigner

semicircular distribution

dµsc :=
1

2π
(4− |x|2)1/2+ dx.

Here we assume that the diagonal entries have bounded mean and variance, and the off
diagonal entries have mean 0 and variance 1.

There are 3 main reductions. We can assume that

1. the coefficients are bounded;

2. the diagonal entries vanish;

3. n ranges over a lacunary sequence: it suffices to show that the convergence holds over
a subsequence nm, where nm := b(1 + ε)mc for some ε > 0.

We have also proved the following lemma:

Lemma 1.2. For all n × n Hermitian matrices A, B, for all λ ∈ R, and for all ε > 0, we
have

µ 1√
n
(A+B)(−∞, λ) ≤ µ 1√

n
A(−∞, λ+ ε) +

1

ε2n2
‖B‖2F

and

µ 1√
n
(A+B)(−∞, λ) ≥ µ 1√

n
A(−∞, λ− ε)− 1

ε2n2
‖B‖2F .

Let’s see how this implies 1 and 2. We first show 2. Suppose that we have shown the
semicircle law with matrices that the diagonal entries vanish. Take Bn to be the diagonal
matrix with entries same as that of Mn and take An = Mn −Bn. Then by Lemma 1.2,

µ 1√
n
Mn

(−∞, λ) ≤ µ 1√
n
An

(−∞, λ+ ε) +
1

ε2n2
‖Bn‖2F .

The right hand side converges almost surely to µsc(−∞, λ+ ε), because Bn is just sum of n
i.i.d. random variables. So

lim sup
n→∞

µ 1√
n
Mn

(−∞, λ) ≤ µsc(−∞, λ+ ε).

Similarly we have
lim inf
n→∞

µ 1√
n
Mn

(−∞, λ) ≥ µsc(−∞, λ− ε).

Let ε→ 0, we see that µ 1√
n
Mn
→ µsc almost surely.

We may now assume that the diagonal vanishes and see why Lemma 1.2 again implies
1. Suppose that we proved the semicircle law for truncated matrices. Let C > 0 be a fixed



constant. Let M
(C)
n = (ξi,j1{|ξi,j |≤C}). Apply Lemma 1.2 with A = M

(C)
n , B = Mn −M (C)

n ,
we have that for any λ ∈ R and any ε > 0,

µ 1√
n
Mn

(−∞, λ) ≤ µ 1√
n
M

(C)
n

(−∞, λ+ ε) +
1

ε2n2
‖Mn −M (C)

n ‖2F .

Letting n→∞, RHS converges almost surely to µ
(C)
sc (−∞, λ+ ε) +E|ξ1,2|21{|ξ1,2|>C}, by the

strong law of large numbers, and we have µ
(C)
sc instead of µsc because the truncated matrix

might not have variance 1 in off diagonal entries (but yet they still have the same variance).
Letting C →∞, we get

lim sup
n→∞

µ 1√
n
Mn

(−∞, λ) ≤ µsc(−∞, λ+ ε).

Another inequality is similar.
Let’s see why it suffices to assume 3. We will need the following:

Proposition 1.3 (Cauchy interlacing law). For any n × n Hermitian matrix An with top
left (n− 1)× (n− 1) minor An−1, we have

λi(An) ≤ λi(An−1) ≤ λi+1(An)

for all 1 ≤ i ≤ n− 1.

This can be proved easily if you know the min-max principle for eigenvalues. Now let
λ ∈ R and n > m > 0. We first claim that

µMm(−∞, λ) ≤ n

m
µMn(−∞, λ).

To see this, recall

µMm(−∞, λ) =
1

m
#{i : λi(Mm) < λ}

≤ 1

m
#{i : λi(Mn) < λ}

=
n

m
µMn(−∞, λ).

Similarly, one can show that

n

m
µMn(−∞, λ)− n−m

m
≤ µMm(−∞, λ).

Now suppose that we proved the semicircle law along a lacunary sequence, and let’s
see why this implies the semicircle law holds for the whole sequence. Let ε > 0 and take
nj = b(1 + ε)jc. Take n ∈ [nj−1, nj). Put n = nj and m = n in the above claim, we have

nj
n
µ 1√

nj
Mnj

(−∞, λ/√nj)−
nj − n
n

≤ µ 1√
n
Mn

(−∞, λ/
√
n) ≤ nj

n
µ 1√

nj
Mnj

(−∞, λ/√nj).
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Replace λ by
√
nλ and let j →∞ (and hence n→∞), we get

µsc(−∞,min{λ, λ/
√

1 + ε})− ε ≤ lim inf
n→∞

µ 1√
n
Mn

(−∞, λ)

and
lim sup
n→∞

µ 1√
n
Mn

(−∞, λ) ≤ (1 + ε)µsc(−∞,max{λ, λ/
√

1 + ε}).

Let ε→ 0 we get the convergence of whole sequence.
We will now prove the semicircle law, using the moment methods and under the three

assumptions. We will use the Carleman continuity theorem:

Theorem 1.4. Let X,X1, X2, . . . be a sequence of uniformly subgaussian real random vari-
ables. Then the following are equivalent:

1. For all k ≥ 0, EXk
n → EXk as n→∞.

2. Xn ⇒ X as n→∞.

Recall that we want to show that the ESD’s converge almost surely to the semicircular
law. Using above, we just need to show that almost surely, for all k ≥ 0,∫

R
xk dµ 1√

n
Mn

(x)→
∫
R
xk dµsc(x).

We also need to check the subgaussian hypothesis. But what are the random variables? In
this case, it is just the identity function Xn(x) = x, and to verify where the measure is
subgaussian, we just need to show that almost surely, there exists C, c > 0 such that

µ 1√
n
Mn

({x ∈ R : |x| ≥ λ}) ≤ Ce−cλ
2

for all large λ and for all n. But this is clear, since by Bai-Yin (although we did not
prove), under the assumption that the entries are bounded, for any ε > 0, almost surely,
‖M‖ ≤ (2 + ε)

√
n for all large n.

Now, observe that∫
R
xk dµ 1√

n
Mn

(x) =
1

n

n∑
i=1

λki

(
1√
n
Mn

)
=

1

n
tr

[(
1√
n
Mn

)k]
.

Taking expectation, we have∫
R
xk dEµ 1√

n
Mn

(x) = E
1

n
tr

[(
1√
n
Mn

)k]
.

This is exactly the moment we saw when we were finding the operator norm of random
matrices. We will show that convergence of moments next time, and this will finish the
proof.
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