
1 Catalan number

Recall that the Catalan number Cn equals

1

n+ 1

(
2n

n

)
.

If you want to know more different representations of Catalan numbers, you can read Richard
Stanley’s notes: http://www-math.mit.edu/~rstan/bij.pdf.

Note that we can use Talagrand’s inequality to conclude that the mean or the median
of ‖M‖ is at least (C

1/k
k/2 + ok(1))

√
n. In particular, we would like to know the value of C

1/k
k/2

when k is large. By Stirling’s formula, which says

k! ∼
√

2πk(k/e)k,

we have

C
1/k
k/2 =

(
1

k/2 + 1

(
k

k/2

))1/k

∼

(√
2πk(k/e)k

πk(k/2e)k

)1/k

∼ 2.

That is, C
1/k
k/2 → 2 as k → ∞. This gives the mean or the median of ‖M‖ is at least

(2 − o(1))
√
n (also known as lower Bai-Yin Theorem). With some more work (which we

will not show here), one can also obtain that the mean or the median of ‖M‖ is at most
(2 + o(1))

√
n. In fact, one can even show that if the entries are bounded, then

lim
n→∞

‖M‖√
n

= 2.

It is known that under suitable hypothesis, ‖M‖ is concentrated in the range [2
√
n −

O(n−1/6), 2
√
n+O(n−1/6)], and the normalized sequence (‖M‖−2

√
n)n1/6 converges weakly

to the Tracy-Widom distribution. I will talk about this in a separate notes, since it is
interesting but we will not (be able to) cover this topic in the seminar.

This gives the heuristic that the eigenvalues of an n× n Wigner Hermitian matrix, after
divided by

√
n, should concentrate on [−2, 2]. We will see that this is the case in certain

sense.

2 The semicircle law

Definition 2.1. Given any n× n Hermitian matrix Mn, the empirical spectral distribution
(ESD), µ 1√

n
Mn

, is defined to be the measure

µ 1√
n
Mn

=
1

n

n∑
i=1

δλi( 1√
n
Mn)

.

http://www-math.mit.edu/~rstan/bij.pdf


We will show that the ESD of a Hermitian random matrix will converge in some senses,
but first we have to define what convergence is for “random measures”.

Definition 2.2. Consider a sequence of Hermitian matrices Mn. We say

µ 1√
n
Mn
→ µ ∈ Pr(R)

in probability (resp. almost surely) if for all test function ϕ ∈ Cc(R),∫
R
ϕ dµ 1√

n
Mn
→
∫
R
ϕ dµ

in probability (resp. almost surely).

We will also define convergence in expectation.

Definition 2.3. The expectation of µ 1√
n
Mn

, denoted by Eµ 1√
n
Mn

, is defined to be the proba-

bility measure such that ∫
R
ϕ dEµ 1√

n
Mn

= E

∫
R
ϕ dµ 1√

n
Mn
.

We say that the ESD’s converge in expectation if∫
R
ϕ dEµ 1√

n
Mn
→
∫
R
ϕ dµ

for all test function ϕ.

Note that the expectation is always defined and is unique by Riesz representation the-
orem. We also remark that if the ESD’s converge almost surely, then they converge in
probability and in expectation (for the latter, it is because the test functions are always
bounded, and so we can apply bounded convergence theorem).

Theorem 2.4 (The Wigner semicircle law). Let Mn be the top left n × n minor of an
infinite Wigner matrix (ξi,j). Then the ESD’s µ 1√

n
Mn

converges almost surely to the Wigner

semicircular distribution

dµsc :=
1

2π
(4− |x|2)1/2+ dx.

To prove this, there are 3 main reductions. We can assume that

1. the coefficients are bounded;

2. the diagonal entries vanish;

3. n ranges over a lacunary sequence: it suffices to show that the convergence holds over
a subsequence nm, where nm := b(1 + ε)mc for some ε > 0.
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To see 1 and 2, we will make use of the Weilandt-Hoffman inequality: for n×n Hermitian
matrices A and B,

n∑
j=1

|λj(A+B)− λj(A)|2 ≤ ‖B‖2F ,

where the eigenvalues are ordered such that λj ≤ λj+1, and ‖B‖2F = tr(B2) is the Frobenius
norm.

Lemma 2.5. For all n × n Hermitian matrices A, B, for all λ ∈ R, and for all ε > 0, we
have

µ 1√
n
(A+B)(−∞, λ) ≤ µ 1√

n
A(−∞, λ+ ε) +

1

ε2n2
‖B‖2F

and

µ 1√
n
(A+B)(−∞, λ) ≥ µ 1√

n
A(−∞, λ− ε)− 1

ε2n2
‖B‖2F .

Proof. We just prove the first inequality. Suppose that λi(A + B) is the largest eigenvalue
of A+ B that is less than λn, and suppose that λj(A) is the largest eigenvalue of A that is
less than (λ+ ε)

√
n. The first inequality then can be written as i ≤ j + 1

ε2n
‖B‖2F .

If i ≤ j, then we are done. If i > j, then for j < ` ≤ i, we have |λ`(A+B)−λ`(A)| ≥ εn,
because λ`(A) ≥ (λ+ ε)

√
n but λ`(A+B) < λ

√
n. Therefore,

n∑
k=1

|λk(A+B)− λk(A)|2 ≥ ε2(i− j)n.

By the Weilandt-Hoffman inequality, we have

ε2(i− j)n ≤ ‖B‖2F .

Rearranging, we obtain the desired inequality.
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