1 Non-crossing cycles and Catalan number

This time we will show the following lemma:
Lemma 1.1. The number of non-crossing cycles of length k in $\{1, \ldots, n\}$ is equal to $C_{k / 2} n(n-$ 1) $\cdots(n-k / 2)$, where $C_{k / 2}$ is the number of Dyck words of length k.

We will use a slightly different formulation, and will not follow [1] completely. How to think of non-crossing cycles? We observe that a cycle of length k is non-crossing if and only if there exists a tree in the complete graph of order n with $k / 2$ edges and $k / 2+1$ vertices, such that the cycle lies in the tree and traverses each edge in the tree exactly twice. It will be clearer if I draw a picture, but I am too lazy to do that here.

Why such a cycle is called non-crossing? It is because one can draw the cycles as follows. Let $\left(i_{1}, \ldots, i_{k}\right)$ be a cycle of length k and arrange $1, \ldots, k$ on the circle. Draw a line segment between a and b if $i_{a}=i_{b}$. If there is no crossing (and the number of line segment is $k / 2-1$), the cycle will be non-crossing. Again it will be clear if one draws a picture.

Instead of Dyck words, we will consider Dyck paths. A Dyck path of length k (where k is even) is a diagonal lattice path from $(0,0)$ to $(k, 0)$ that never goes below the x-axis. Note that the number of rooted trees with $k / 2+1$ vertices is equal to the number of Dyck paths with k steps. To see this, we can construct a tree from the Dyck path as follows. If the path goes up, then we make a new branch from the vertex we are staying at, and if it goes down, then we just return to the parent of the vertex.

Since a non-crossing cycle gives rise to an ordered sequence and a Dyck path, and there is an obvious bijection between Dyck paths and Dyck words, this proves Lemma 1.1.

We have shown last time that for a Hermitian Wigner matrix M with entries having mean 0, variance 1, and bounded above by $o(\sqrt{n})$ in magnitude, then $\operatorname{Etr}\left(M^{k}\right)=\left(C_{k / 2}+\right.$ $\left.o_{k}(1)\right) n^{k / 2+1}$ (I think in the seminar I said that this seems to be just the upper bound, but indeed this is a 2 -sided bound). Combining with $\|M\|^{k} \leq \operatorname{tr}\left(M^{k}\right) \leq n\|M\|^{k}$, we have

$$
\mathbf{E}\|M\|^{k} \geq\left(C_{k / 2}+o_{k}(1)\right) n^{k / 2}
$$

How to find $C_{k / 2}$? We can easily prove by induction that there exists a recurrence relation

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i} .
$$

Define the generating function of C_{n} :

$$
f(z)=\sum_{n=0}^{\infty} C_{n} z^{n}
$$

Then

$$
f(z)^{2}=\sum_{n=0}^{\infty}\left(\sum_{i=0}^{n} C_{i} C_{n-i}\right) z^{n}=\sum_{n=0}^{\infty} C_{n+1} z^{n} .
$$

Thus we have the functional equation

$$
z(f(z))^{2}=f(z)-1
$$

Solving for f, we have

$$
f(z)=\frac{1-\sqrt{1-4 z}}{2 z}
$$

and by finding the coefficients of the Taylor series of f we see that

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

References

[1] Tao, Terence. Topics in random matrix theory. Graduate Studies in Mathematics, 132. American Mathematical Society, Providence, RI, 2012. x+282 pp. ISBN: 978-0-8218-7430-1
[2] Thompson, Brady. Talk on 2/23.

