1 The moment method

Last time we saw that by finding an upper bound for Etr(M*), we would obtain ||M|| < n®/*
with high probability. Let’s see what will happen if we consider Etr(M?9).
Again,
Etr(M°) = Z E&iy iy s igigin

1<y, ig<n

a sum over cycles of length 6 in {1,2,...,n}. As before, we just need to consider those cycles
in which each edge occurs at least twice. We can divide the cycles into 4 classes:

1. There are 3 distinct edges, each occurring twice. This type of cycle give a contribution
1, and such cycles have at most 4 vertices, which give a total contribution O(n*).

2. There are 2 distinct edges, one of them occurring 4 times and the other occurs 2 times.
The number of vertices involved is at most 3, so the total contribution is O(K?n?).

3. There are 2 distinct edges and each of them occurs three times. This contributes
O(K?n?) again.

4. There is only 1 edge occurs 6 times. The contribution is O(K*n?).

This implies
Etr(M®) < O(n*) + O(K*n?) + O(K*n?).

If K = O(y/n), this gives Etr(M®) < O(n'). Recall that
0] < (M%),

Using similar argument as before we see that || M|| < O(n?/?) with high probability.

1.1 k-th moment computation

Let’s consider Etr(M*), where k is an even integer. Again,

Etl"(Mk) = Z Efil,iz T éik,ilu

1<iy,..., ik <n

where the sum if taken over all cycles of length k in {1,2,...,n}. The only non-vanishing
expectation are those for which each edge occurs at least twice. In particular, there are at
most k/2 distinct edges, and thus at most k/2 + 1 vertices.

We would like to divide the cycles into various classes. For instance, let’s again consider
k = 4. In this case, we have terms like

Ef’il 2 512 NE! fis,iz; §i47i1 :

Recall that we have several classes, one of which is i1 = 13, i = 14, but 77 # i5. In this case,
all the edges {iy,i2}, {i2,43}, {i3,74} and {iy4, i} are the same. We will write 1 ~ 2 ~ 3 ~ 4,
because all the four terms are the same.



Let’s do one more example, again with & = 4. Consider the case 7; = 13, but iy,i4 are
distinct from each other and from ¢;. In this case, the edge {i1,i2} will be the same as
{i2,13}, and the edge {is,i4} will be the same as {i4,i;}. We can write 1 ~ 2 and 3 ~ 4 in
this case, because the first and the second terms are the same, and the third and the fourth
terms are the same. However, 2 o4 3.

In general, we divide the cycles into various classes, depending on which edges are equal
to each other. More precisely, a class is an equivalence relation ~ on a set of k labels,
say {1,...,k}, where each class has at least two elements. We associate a cycle of k edges
{i1,i2}, ..., {ik, 91} to a class when we have {i;,4;41} = {i;, 4541} if and only if j ~ j'. For
instance, in the first example we saw, the case i; = i3, i3 = 14, but i1 # iy is associated to
the class 1 ~ 2 ~ 3 ~ 4.

How many classes are there? Well, we need to assign up to k/2 labels to k£ edges, so a
crude upper bound would be (k/2)*.

Now consider a given class of cycle. it has j edges (and hence at most j+1 many vertices),
where 1 < j < k/2, with multiplicity a1, ...,a;. Note that a; > 2 (because each edge appears
at least twice so that the expectation will not vanish) and )7, a; = k. Therefore,

Ef’il,ig e gik,li S Ka1—2Ka2—2 . Kzz]-—2 _ Kk_2j7
and thus

Etr(M*) < (k/2)"K*20(n*)

(k’/Q)k maX{nk/Q—l—l’ n2Kk—2}
= (k:/2)knk/2+1 max{1, (K/\/ﬁ)k_Z}.

<
<

By ||[M|/* < tr(M*) again, we have
E||M|* < (k/2)"n"* ! max{1, (K/v/n)" 2},
So by Markov’s inequality, we have
P(|[M] 2 A) < A7*(k/2)n"* > max(1, (K/vn)"*}

for all A > 0. We will continue next time.
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