
1 The moment method

Last time we saw that by finding an upper bound for Etr(M4), we would obtain ‖M‖ . n3/4

with high probability. Let’s see what will happen if we consider Etr(M6).
Again,

Etr(M6) =
∑

1≤i1,...,i6≤n

Eξi1,i2 · · · ξi5,i6ξi6,i1 ,

a sum over cycles of length 6 in {1, 2, . . . , n}. As before, we just need to consider those cycles
in which each edge occurs at least twice. We can divide the cycles into 4 classes:

1. There are 3 distinct edges, each occurring twice. This type of cycle give a contribution
1, and such cycles have at most 4 vertices, which give a total contribution O(n4).

2. There are 2 distinct edges, one of them occurring 4 times and the other occurs 2 times.
The number of vertices involved is at most 3, so the total contribution is O(K2n3).

3. There are 2 distinct edges and each of them occurs three times. This contributes
O(K2n3) again.

4. There is only 1 edge occurs 6 times. The contribution is O(K4n2).

This implies
Etr(M6) ≤ O(n4) +O(K2n3) +O(K4n2).

If K = O(
√
n), this gives Etr(M6) ≤ O(n4). Recall that

‖M‖ ≤ tr(M6)1/6.

Using similar argument as before we see that ‖M‖ ≤ O(n2/3) with high probability.

1.1 k-th moment computation

Let’s consider Etr(Mk), where k is an even integer. Again,

Etr(Mk) =
∑

1≤i1,...,ik≤n

Eξi1,i2 · · · ξik,i1 ,

where the sum if taken over all cycles of length k in {1, 2, . . . , n}. The only non-vanishing
expectation are those for which each edge occurs at least twice. In particular, there are at
most k/2 distinct edges, and thus at most k/2 + 1 vertices.

We would like to divide the cycles into various classes. For instance, let’s again consider
k = 4. In this case, we have terms like

Eξi1,i2ξi2,i3ξi3,i4ξi4,i1 .

Recall that we have several classes, one of which is i1 = i3, i2 = i4, but i1 6= i2. In this case,
all the edges {i1, i2}, {i2, i3}, {i3, i4} and {i4, i1} are the same. We will write 1 ∼ 2 ∼ 3 ∼ 4,
because all the four terms are the same.



Let’s do one more example, again with k = 4. Consider the case i1 = i3, but i2, i4 are
distinct from each other and from i1. In this case, the edge {i1, i2} will be the same as
{i2, i3}, and the edge {i3, i4} will be the same as {i4, i1}. We can write 1 ∼ 2 and 3 ∼ 4 in
this case, because the first and the second terms are the same, and the third and the fourth
terms are the same. However, 2 6∼ 3.

In general, we divide the cycles into various classes, depending on which edges are equal
to each other. More precisely, a class is an equivalence relation ∼ on a set of k labels,
say {1, . . . , k}, where each class has at least two elements. We associate a cycle of k edges
{i1, i2}, . . ., {ik, i1} to a class when we have {ij, ij+1} = {ij′ , ij′+1} if and only if j ∼ j′. For
instance, in the first example we saw, the case i1 = i3, i2 = i4, but i1 6= i2 is associated to
the class 1 ∼ 2 ∼ 3 ∼ 4.

How many classes are there? Well, we need to assign up to k/2 labels to k edges, so a
crude upper bound would be (k/2)k.

Now consider a given class of cycle. it has j edges (and hence at most j+1 many vertices),
where 1 ≤ j ≤ k/2, with multiplicity a1, . . . , aj. Note that ai ≥ 2 (because each edge appears
at least twice so that the expectation will not vanish) and

∑j
i=1 ai = k. Therefore,

Eξi1,i2 · · · ξik,i1 ≤ Ka1−2Ka2−2 · · ·Kaj−2 = Kk−2j,

and thus

Etr(Mk) ≤ (k/2)kKk−2jO(nj+1)

≤ (k/2)k max{nk/2+1, n2Kk−2}
= (k/2)knk/2+1 max{1, (K/

√
n)k−2}.

By ‖M‖k ≤ tr(Mk) again, we have

E‖M‖k ≤ (k/2)knk/2+1 max{1, (K/
√
n)k−2}.

So by Markov’s inequality, we have

P(‖M‖ ≥ λ) ≤ λ−k(k/2)knk/2+1 max{1, (K/
√
n)k−2}

for all λ > 0. We will continue next time.
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