
1 The operator norm of random matrices

1.1 Concentration inequalities

Last time we proved the following lemmas.

Lemma 1.1. Suppose that ξi,j are independent, Eξi,j = 0 and |ξi,j| ≤ 1. Let x ∈ Cn be a
unit vector. Then for sufficiently large A, we have

P(‖Mx‖2 ≥ A
√
n) ≤ C exp(−cAn)

for some absolute constants C, c > 0.

Lemma 1.2. Let ε ∈ (0, 1), and let Σ be an ε-net of {x ∈ Cn : ‖x‖2 = 1}. Then there exists
C > 0 such that #Σ ≤ (C/ε)n.

Lemma 1.3. Let Σ be a maximal 1/2-net of {x ∈ Cn : ‖x‖2 = 1}. Then for any λ > 0, we
have

P(‖M‖ > λ) ≤ P

(⋃
y∈Σ

{‖My‖2 > λ/2}

)
.

Applying these lemmas, we obtain the following upper tail estimate for bounded i.i.d.
matrix ensembles.

Corollary 1.4. Suppose that ξi,j are independent, Eξi,j = 0 and |ξi,j| ≤ 1. Then for suffi-
ciently large A, we have

P(‖M‖ ≥ A
√
n) ≤ C exp(−cAn)

for some absolute constants C, c > 0.

We can actually deduce an upper tail estimate for random Hermitian matrices from this.

Corollary 1.5. Suppose that M is a random Hermitian matrix, with |ξi,j| ≤ 1. Then for
sufficiently large A, we have

P(‖M‖ ≥ A
√
n) ≤ C exp(−cAn)

for some absolute constants C, c > 0.

Proof. Write M = L + U , where L is lower triangular and U is strictly upper triangular.
Then apply previous Corollary to L and U .

Remark. The upper tail estimates still hold if we assume ξi,j are (sub)Gaussian random
variables instead of |ξi,j| ≤ 1. In particular, the estimates also hold for GOE and GUE.

We will skip Section 2.3.2.
Other than P(‖M‖ > λ), we are also interested in how ‖M‖ deviates from its mean, like

the Chebyshev inequality. More precisely, we would like to bound P(|‖M‖ − E‖M‖| > λ).
We will use Talagrand’s inequality, which is very powerful.



Theorem 1.6. Let K > 0, and let X1, . . . , Xn be independent complex random variables
with |Xi| ≤ K for all 1 ≤ i ≤ n. Let F : Cn → R be a 1-Lipschitz convex function, where we
identify Cn with R2n for the purposes of defining Lipschitz and convex. Then for any λ ≥ 0,
we have

P(|F (X)− EF (X)| ≥ λK) ≤ C exp(−c2λ)

and
P(|F (X)−MF (X)| ≥ λK) ≤ C exp(−c2λ)

for some absolute constants C, c > 0, where MF (X) is a median of F (X).

The following is a quick application of Talagrand’s inequality.

Proposition 1.7. Suppose that ξi,j are independent, Eξi,j = 0 and |ξi,j| ≤ 1. Then for any
λ ≥ 0, we have

P(|‖M‖ − E‖M‖| ≥ λ) ≤ C exp(−cλ2)

and
P(|‖M‖ −M‖M‖| ≥ λ) ≤ C exp(−cλ2)

for some absolute constants C, c > 0.

Proof. We can view ‖M‖ as a function F : Cn2 → R defined by F ((ξi,j)) = ‖M‖. Write
N = (ηi,j). F is convex because

F (t(ξi,j)+(1−t)(ηi,j)) = ‖tM+(1−t)N‖ ≤ t‖M‖+(1−t)‖N‖ = tF ((ξi,j))+(1−t)F ((ηi,j)).

Also, writing Q = M −N ,

|F ((ξi,j))− F ((ηi,j))| ≤ ‖Q‖ =
√
λmax(Q∗Q) ≤

√
tr(Q∗Q) =

√√√√ n∑
i,j=1

|ξi,j − ηi,j|2,

and so F is 1-Lipschitz. Therefore we can apply Talagrand’s inequality.

Similarly, one can show that this inequality holds for bounded Hermitian matrix ensem-
bles. Although from the above Proposition we know that ‖M‖ is close to its mean, we don’t
know what the value of the mean is (we only have some rough estimates). Therefore, we will
need some other methods, such as the moment method.

1.2 Moment method

We will first assume M is symmetric or Hermitian. In this case,

‖M‖ = max
1≤i≤n

|λi|.

Also, we have

tr(Mk) =
n∑

i=1

λki .
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If k ∈ 2N, then we have
‖M‖k ≤ tr(Mk) ≤ n‖M‖k,

or equivalently,
‖M‖ ≤ tr(Mk)1/k ≤ n1/k‖M‖. (1.1)

If we have knowledge on the k-th moment tr(Mk), then we will have control on ‖M‖, up to
a factor n1/k. When k gets larger, we will expect that we can get better controls.

Let’s first consider the case k = 2. In this case,

tr(M2) =
n∑

i,j=1

|ξi,j|2.

Note that |ξi,j|2 are independent. Therefore, by the law of large numbers, we obtain that
tr(M2) ∼ n2. From (1.1), we see that

√
n . ‖M‖ . n.

Recall that from the concentration inequality, we have ‖M‖ .
√
n with high probability,

and so we obtain a nice lower bound, but the upper bound should be far from optimal.
Let’s see what happens if we try k = 4. For simplicity, we will assume that Eξi,j = 0 and

Var(ξi,j) = 1. We will also assume that |ξi,j| ≤ K. Note that

tr(M4) =
∑

1≤i1,i2,i3,i4≤n

ξi1,i2ξi2,i3ξi3,i4ξi4,i1 .

Taking expectation, we have

Etr(M4) =
∑

1≤i1,i2,i3,i4≤n

Eξi1,i2ξi2,i3ξi3,i4ξi4,i1 .

One can view this sum graphically, as a sum over length four cycles in the vertex set
{1, . . . , n}. If all the edges are distinct, then by independence, Eξi1,i2ξi2,i3ξi3,i4ξi4,i1 = 0.
There are many such terms will vanish. One can show that up to cyclic permutations of
i1, i2, i3, i4, there are only a few types of cycles in which Eξi1,i2ξi2,i3ξi3,i4ξi4,i1 does not vanish,
namely

1. i1 = i3, but i2, i4 are distinct from each other and from i1. In this case,

Eξi1,i2ξi2,i3ξi3,i4ξi4,i1 = Eξi1,i2ξi2,i1ξi1,i4ξi4,i1 = Eξ2
i1,i2

ξ2
i1,i4

= 1.

There are O(n3) such terms, so the total contribution to Etr(M4) is at most O(n3).

2. i1 = i3, i2 = i4 but i1 6= i2. In this case,

Eξi1,i2ξi2,i3ξi3,i4ξi4,i1 = Eξi1,i2ξi2,i1ξi1,i2ξi2,i1 = Eξ4
i1,i2
≤ K2Eξ2

i1,i2
= K2.

There are O(n2) such terms, so the total contribution to Etr(M4) is at most O(n2K2).
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3. i1 = i2 = i3, but i4 6= i1. In this case,

Eξi1,i2ξi2,i3ξi3,i4ξi4,i1 = Eξi1,i1ξi1,i1ξi1,i4ξi4,i1 = Eξ2
i1,i1

ξ2
i1,i4

= 1.

The total contribution to Etr(M4) is at most O(n2).

4. i1 = i2 = i3 = i4. The total contribution is O(nK2).

Combining all the cases, we see that

Etr(M4) ≤ O(n3) +O(n2K2).

If K = O(
√
n), then Etr(M4) ≤ O(n3). By Markov inequality, this gives tr(M4) ≤ O(n3)

with high probability. In particular, (1.1) gives

‖M‖ . n3/4

with high probability. The bound has been improved!
We will see what will happen when k gets larger next time.
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