
1 Stieltjes transform

From last time, we saw that it suffices to study the last entry of
(

1√
n
Mn − zIn

)−1
.

Definition 1.1. Let M be a (p+ q)× (p+ q) matrix, and write

M =

(
A B
C D

)
,

where A is p × p and D is q × q. Then the Schur complement of A is the q × q matrix
M/A := D − CA−1B.

If A is invertible, then

M−1 =

(
A−1 + A−1B(M/A)−1CA−1 −A−1B(M/A)−1

−(M/A)−1CA−1 (M/A)−1

)
.

Apply to our situation, if we write

Mn =

(
Mn−1 X
X∗ ξn,n

)
,

we see that(
1√
n
Mn − zIn

)−1
n,n

=

(
1√
n
ξn,n − z −

1

n
X∗
(

1√
n
Mn−1 − zIn−1

)−1
X

)−1
.

As we have seen before, to prove the semicircle law, we may assume that the diagonal entries
are 0. Therefore,

E

[(
1√
n
Mn − zIn

)−1
n,n

]
= −E

(
z +

1

n
X∗
(

1√
n
Mn−1 − zIn−1

)−1
X

)−1
. (1.1)

Write R =
(

1√
n
Mn−1 − zIn−1

)−1
. We would like to know what X∗RX is. First, observe that

X and R are independent. Therefore, we may condition on R and study X∗RX assuming R
is some deterministic matrix. But before that, we also observe that Mn−1 is Hermitian, and
hence all its eigenvalues are real. In particular, this implies the operator norm of R, ‖R‖,
is of order O(1), since we assume that the imaginary part of z is positive. So it suffices to
understand what X∗RX is when R is deterministic and ‖R‖ = O(1).

Before study X∗RX, let’s first study X∗AX, where A is a positive semidefinite matrix
with ‖A‖ = O(1). Also, we will further assume that the entries of Mn are uniformly bounded
(which is fine by the reduction we saw before). In this case, the map X 7→ (X∗AX)1/2 =
‖A1/2X‖ is Lipschitz. Therefore, we can apply Talagrand’s inequality to see

P
(∣∣(X∗AX)1/2 −M(X∗AX)1/2

∣∣ ≥ λ
)
≤ Ce−cλ

2

.



IfA has k nonzero eigenvalues, then using Hoeffding’s inequality one can show that ‖A1/2X‖ ≥
Ω(
√
k) with high probability, and this also implies M(X∗AX)1/2 ≥ Ω(

√
k). Moreover, ob-

serve that median satisfies (M(X∗AX)1/2)2 = M(X∗AX). Therefore, multiplying both sides
in the probability by

∣∣(X∗AX)1/2 + M(X∗AX)1/2
∣∣, we see that

P
(
|X∗AX −M(X∗AX)| ≥ λ

√
k
)
≤ Ce−cλ

2

,

for some possibly different C and c. If A is Hermitian instead of positive definite, we may
write A = A++A−, where A+ has only nonnegative eigenvalues and A− has only nonpositive
eigenvalues, and applying triangle inequality we obtain

P
(
|X∗AX −M(X∗AX)| ≥ λ

√
n
)
≤ Ce−cλ

2

for some different C and c. Using the fact that any random variable Y with finite second
moment satisfies |MY − EY | = O(Var(Y )1/2), we can replace median by the mean. If R is
a general matrix with ‖R‖ = O(1), we may write R = A+ B, where A is Hermitian and B
is skew-Hermitian, and similarly we will obtain

P
(
|X∗RX − EX∗RX| ≥ λ

√
n
)
≤ Ce−cλ

2

.

Now, since ξi,j has mean zero and variance 1, we have

EX∗RX =
n−1∑
i=1

n−1∑
j=1

Eξi,nri,jξj,n

=
n−1∑
i=1

n−1∑
j=1

ri,jδij

= tr(R).

Thus, we have
P
(
|X∗RX − tr(R)| ≥ λ

√
n
)
≤ Ce−cλ

2

.

The above bound holds for deterministic matrix R with ‖R‖ = O(1). If R is random, then

P
(
|X∗RX − tr(R)| ≥ λ

√
n
)

= E
[
P
(
|X∗RX − tr(R)| ≥ λ

√
n |R

)]
≤ Ce−cλ

2

.

By some computations, we have

tr(R) =
√
n(n− 1)sn−1

( √
n√

n− 1
z

)
.

This expression is exactly the same as what we saw last time, and hence by what we showed
last time, we have

tr(R) = n(sn(z) + o(1)).
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Also, recall that almost surely, sn(z)− Esn(z)→ 0 as n→∞, and hence

tr(R) = n(Esn(z) + o(1)).

Finally, writing En = {|X∗RX − tr(R)| ≥ n1/3}, and recalling the left hand side of (1.1)
is Esn(z), we obtain

Esn(z) = −E

(
z +

1

n
X∗RX

)−1
= −E

[(
z +

1

n
X∗RX

)−1
1En

]
+ o(1)

= −E

(
z +

1

n
(nEsn(z) + o(1))

)−1
+ o(1)

= − 1

z + Esn(z)
+ o(1).

It is not difficult to show that Esn is locally uniformly equicontinuous and locally uniformly
bounded away from the real line. By the Arzelà-Ascoli theorem, Esn converges locally
uniformly to a limit s along a subsequence. So we have

s(z) = − 1

z + s(z)
.

Solving for s(z), we have

s(z) =
−z ±

√
z2 − 4

2
.

Since the Stieltjes transform goes to 0 as z →∞, we conclude that

s(z) =
−z +

√
z2 − 4

2
.

As there is only one possible subsequential limit of Esn, we conclude that Esn converges
locally uniformly to s, and thus sn(z) converges to s(z) almost surely.

To finish the proof, it remains to find which distribution has the Stieltjes transform s,
but this can be found by observing

s(·+ bi)− s(· − bi)
2πi

⇒ µsc

as b ↓ 0.
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