1 Stieltjes transform

From last time, we saw that it suffices to study the last entry of $\left(\frac{1}{\sqrt{n}} M_{n}-z I_{n}\right)^{-1}$.
Definition 1.1. Let M be a $(p+q) \times(p+q)$ matrix, and write

$$
M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

where A is $p \times p$ and D is $q \times q$. Then the Schur complement of A is the $q \times q$ matrix $M / A:=D-C A^{-1} B$.

If A is invertible, then

$$
M^{-1}=\left(\begin{array}{cc}
A^{-1}+A^{-1} B(M / A)^{-1} C A^{-1} & -A^{-1} B(M / A)^{-1} \\
-(M / A)^{-1} C A^{-1} & (M / A)^{-1}
\end{array}\right) .
$$

Apply to our situation, if we write

$$
M_{n}=\left(\begin{array}{cc}
M_{n-1} & X \\
X^{*} & \xi_{n, n}
\end{array}\right)
$$

we see that

$$
\left(\frac{1}{\sqrt{n}} M_{n}-z I_{n}\right)_{n, n}^{-1}=\left(\frac{1}{\sqrt{n}} \xi_{n, n}-z-\frac{1}{n} X^{*}\left(\frac{1}{\sqrt{n}} M_{n-1}-z I_{n-1}\right)^{-1} X\right)^{-1}
$$

As we have seen before, to prove the semicircle law, we may assume that the diagonal entries are 0 . Therefore,

$$
\begin{equation*}
\mathbf{E}\left[\left(\frac{1}{\sqrt{n}} M_{n}-z I_{n}\right)_{n, n}^{-1}\right]=-\mathbf{E}\left(z+\frac{1}{n} X^{*}\left(\frac{1}{\sqrt{n}} M_{n-1}-z I_{n-1}\right)^{-1} X\right)^{-1} \tag{1.1}
\end{equation*}
$$

Write $R=\left(\frac{1}{\sqrt{n}} M_{n-1}-z I_{n-1}\right)^{-1}$. We would like to know what $X^{*} R X$ is. First, observe that X and R are independent. Therefore, we may condition on R and study $X^{*} R X$ assuming R is some deterministic matrix. But before that, we also observe that M_{n-1} is Hermitian, and hence all its eigenvalues are real. In particular, this implies the operator norm of $R,\|R\|$, is of order $O(1)$, since we assume that the imaginary part of z is positive. So it suffices to understand what $X^{*} R X$ is when R is deterministic and $\|R\|=O(1)$.

Before study $X^{*} R X$, let's first study $X^{*} A X$, where A is a positive semidefinite matrix with $\|A\|=O(1)$. Also, we will further assume that the entries of M_{n} are uniformly bounded (which is fine by the reduction we saw before). In this case, the map $X \mapsto\left(X^{*} A X\right)^{1 / 2}=$ $\left\|A^{1 / 2} X\right\|$ is Lipschitz. Therefore, we can apply Talagrand's inequality to see

$$
\mathbf{P}\left(\left|\left(X^{*} A X\right)^{1 / 2}-\mathbf{M}\left(X^{*} A X\right)^{1 / 2}\right| \geq \lambda\right) \leq C e^{-c \lambda^{2}}
$$

If A has k nonzero eigenvalues, then using Hoeffding's inequality one can show that $\left\|A^{1 / 2} X\right\| \geq$ $\Omega(\sqrt{k})$ with high probability, and this also implies $\mathbf{M}\left(X^{*} A X\right)^{1 / 2} \geq \Omega(\sqrt{k})$. Moreover, observe that median satisfies $\left(\mathbf{M}\left(X^{*} A X\right)^{1 / 2}\right)^{2}=\mathbf{M}\left(X^{*} A X\right)$. Therefore, multiplying both sides in the probability by $\left|\left(X^{*} A X\right)^{1 / 2}+\mathbf{M}\left(X^{*} A X\right)^{1 / 2}\right|$, we see that

$$
\mathbf{P}\left(\left|X^{*} A X-\mathbf{M}\left(X^{*} A X\right)\right| \geq \lambda \sqrt{k}\right) \leq C e^{-c \lambda^{2}}
$$

for some possibly different C and c. If A is Hermitian instead of positive definite, we may write $A=A_{+}+A_{-}$, where A_{+}has only nonnegative eigenvalues and A_{-}has only nonpositive eigenvalues, and applying triangle inequality we obtain

$$
\mathbf{P}\left(\left|X^{*} A X-\mathbf{M}\left(X^{*} A X\right)\right| \geq \lambda \sqrt{n}\right) \leq C e^{-c \lambda^{2}}
$$

for some different C and c. Using the fact that any random variable Y with finite second moment satisfies $|\mathbf{M} Y-\mathbf{E} Y|=O\left(\operatorname{Var}(Y)^{1 / 2}\right)$, we can replace median by the mean. If R is a general matrix with $\|R\|=O(1)$, we may write $R=A+B$, where A is Hermitian and B is skew-Hermitian, and similarly we will obtain

$$
\mathbf{P}\left(\left|X^{*} R X-\mathbf{E} X^{*} R X\right| \geq \lambda \sqrt{n}\right) \leq C e^{-c \lambda^{2}}
$$

Now, since $\xi_{i, j}$ has mean zero and variance 1, we have

$$
\begin{aligned}
\mathbf{E} X^{*} R X & =\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \mathbf{E} \overline{\xi_{i, n}} r_{i, j} \xi_{j, n} \\
& =\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} r_{i, j} \delta_{i j} \\
& =\operatorname{tr}(R) .
\end{aligned}
$$

Thus, we have

$$
\mathbf{P}\left(\left|X^{*} R X-\operatorname{tr}(R)\right| \geq \lambda \sqrt{n}\right) \leq C e^{-c \lambda^{2}}
$$

The above bound holds for deterministic matrix R with $\|R\|=O(1)$. If R is random, then

$$
\mathbf{P}\left(\left|X^{*} R X-\operatorname{tr}(R)\right| \geq \lambda \sqrt{n}\right)=\mathbf{E}\left[\mathbf{P}\left(\left|X^{*} R X-\operatorname{tr}(R)\right| \geq \lambda \sqrt{n} \mid R\right)\right] \leq C e^{-c \lambda^{2}}
$$

By some computations, we have

$$
\operatorname{tr}(R)=\sqrt{n(n-1)} s_{n-1}\left(\frac{\sqrt{n}}{\sqrt{n-1}} z\right) .
$$

This expression is exactly the same as what we saw last time, and hence by what we showed last time, we have

$$
\operatorname{tr}(R)=n\left(s_{n}(z)+o(1)\right)
$$

Also, recall that almost surely, $s_{n}(z)-\mathbf{E} s_{n}(z) \rightarrow 0$ as $n \rightarrow \infty$, and hence

$$
\operatorname{tr}(R)=n\left(\mathbf{E} s_{n}(z)+o(1)\right)
$$

Finally, writing $E_{n}=\left\{\left|X^{*} R X-\operatorname{tr}(R)\right| \geq n^{1 / 3}\right\}$, and recalling the left hand side of (1.1) is $\mathbf{E} s_{n}(z)$, we obtain

$$
\begin{aligned}
\mathbf{E} s_{n}(z) & =-\mathbf{E}\left(z+\frac{1}{n} X^{*} R X\right)^{-1} \\
& =-\mathbf{E}\left[\left(z+\frac{1}{n} X^{*} R X\right)^{-1} \mathbf{1}_{E_{n}}\right]+o(1) \\
& =-\mathbf{E}\left(z+\frac{1}{n}\left(n \mathbf{E} s_{n}(z)+o(1)\right)\right)^{-1}+o(1) \\
& =-\frac{1}{z+\mathbf{E} s_{n}(z)}+o(1) .
\end{aligned}
$$

It is not difficult to show that $\mathbf{E} s_{n}$ is locally uniformly equicontinuous and locally uniformly bounded away from the real line. By the Arzelà-Ascoli theorem, Es s_{n} converges locally uniformly to a limit s along a subsequence. So we have

$$
s(z)=-\frac{1}{z+s(z)}
$$

Solving for $s(z)$, we have

$$
s(z)=\frac{-z \pm \sqrt{z^{2}-4}}{2} .
$$

Since the Stieltjes transform goes to 0 as $z \rightarrow \infty$, we conclude that

$$
s(z)=\frac{-z+\sqrt{z^{2}-4}}{2} .
$$

As there is only one possible subsequential limit of $\mathbf{E} s_{n}$, we conclude that $\mathbf{E} s_{n}$ converges locally uniformly to s, and thus $s_{n}(z)$ converges to $s(z)$ almost surely.

To finish the proof, it remains to find which distribution has the Stieltjes transform s, but this can be found by observing

$$
\frac{s(\cdot+b i)-s(\cdot-b i)}{2 \pi i} \Rightarrow \mu_{\mathrm{sc}}
$$

as $b \downarrow 0$.

References

[1] Tao, Terence. Topics in random matrix theory. Graduate Studies in Mathematics, 132. American Mathematical Society, Providence, RI, 2012. x+282 pp. ISBN: 978-0-8218-7430-1
[2] Thompson, Brady. Talk on 4/13.

