
1 Random matrix ensembles

We will consider these three types of random matrices.

1. I.i.d. matrix ensembles. The coefficients ξi,j are i.i.d. (real or complex) random
variables. We will often assume that Eξ = 0 and Var(ξ) = 1.

2. Symmetric Wigner matrix ensembles. The upper triangular coefficients ξi,j, where
j ≥ i, are independent and real, but the lower triangular coefficients ξi,j, where j < i,
equal their transpose ξj,i. The distribution of the diagonal coefficients and that of
the strictly upper triangular coefficients may be different. An important example is
the Gaussian Orthogonal Ensemble (GOE), in which the upper triangular entries have
distribution N(0, 1)R while the diagonal entries have distribution N(0, 2)R.

3. Hermitian Wigner matrix ensembles. The upper triangular coefficients ξi,j, where j ≥ i,
are independent and complex, but the lower triangular coefficients ξi,j, where j < i,
equal their adjoint ξj,i. An important example is the Gaussian Unitary Ensemble
(GUE), in which the upper triangular entries have distribution N(0, 1)C while the
diagonal entries have distribution N(0, 1)R.

2 The operator norm of random matrices

We will be interested in the distribution of the eigenvalues or their related quantities of a
n× n matrix ensemble M = (ξi,j). We will first focus on the operator norm

‖M‖ := sup
‖x‖2=1

‖Mx‖2.

Note that ‖M‖ is the square root of the largest eigenvalue of M∗M . How large should ‖M‖
be if the entries are random? Let say all the entries ξi,j satisfy |ξi,j| ≤ 1. Then because of
the fact that all the norms on a finite dimensional vector space are equivalent, by computing
the Hilbert–Schmidt norm, we may guess that ‖M‖ ∼ n. However, this argument does not
make use of independence. (In fact, if you think carefully, the argument does not quite make
sense. Although the norms are equivalent on Cn2

, the constants in the “norm inequality” do
depend on n. Anyway, the point is we will not be able to get a good bound if we don’t use
the independence structure.) We will see in fact that ‖M‖ ∼

√
n.

2.1 A concentration inequality

It is usually difficult to derive a limit law for a sequence of random variables (Xn). Instead
proving a concentration inequality would be easier and would help us understanding the
asymptotic behavior of Xn more. To be more precise, if we have a bound on P(Xn > x),
then we will understand the random variable Xn better.

In our case, we will be interested in the following quantity:

P(‖M‖ > λ), λ ≥ 0.



By definition, we have

P(‖M‖ > λ) = P (there exists x ∈ Cn with ‖x‖2 = 1 such that ‖Mx‖2 > λ) .

Let’s forget about “there exists x ∈ Cn with ‖x‖2 = 1 such that” and focus on P(‖Mx‖2 > λ)
first. We have the following.

Lemma 2.1. Suppose that ξi,j are independent, Eξi,j = 0 and |ξi,j| ≤ 1. Let x ∈ Cn be a
unit vector. Then for sufficiently large A, we have

P(‖Mx‖2 ≥ A
√
n) ≤ C exp(−cAn)

for some absolute constants C, c > 0.

Proof. Write x = (x1, . . . , xn). Then each row ofMx is
∑n

j=1 ξi,jxj. By Hoeffding’s inequality
(we will state the inequality below), we have

P
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∫ ∞
1

4t−1/4cdt =: C <∞

when c > 0 is sufficient small. So by independence,

E exp(c‖Mx‖2
2) =

n∏
i=1

E exp

c ∣∣∣∣∣
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ξi,jxj
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 ≤ Cn.

Finally, by Markov’s inequality,

P(‖Mx‖2 ≥ A
√
n) ≤ Cn exp(−cA2n) = exp((−cA2 + logC)n).

Hence the inequality holds when A is sufficiently large.
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Here is the statement of Hoeffding’s inequality.

Theorem 2.2 (Hoeffding’s inequality). Let X1, . . . , Xn be independent real-valued random
variables such that Xi ∈ [ai, bi] almost surely for all i ≤ n. Then for every t ≥ 0,

P

(∣∣∣∣∣
n∑
i=1

(Xi − EXi)

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Recall that we were trying to bound

P (there exists x with ‖x‖2 = 1 such that ‖Mx‖2 > λ) = P

 ⋃
x:‖x‖2=1

{‖Mx‖2 > λ}

 .

We cannot apply subadditivity on the right hand side since it is an uncountable union.
However, this can be “reduced” to a finite union because the map x 7→ ‖Mx‖2 is (Lipschitz)
continuous.

Definition 2.3. A set Σ ⊆ S is called an ε-net (ε > 0) of S if for any x, y ∈ Σ, x 6= y, we
have ‖x− y‖2 ≥ ε.

Lemma 2.4. Let ε ∈ (0, 1), and let Σ be an ε-net of {x ∈ Cn : ‖x‖2 = 1}. Then there exists
C > 0 such that #Σ ≤ (C/ε)n.

Proof. Consider the balls of radius ε/2 centered around each point in Σ. These balls are
disjoint, and obviously covered by a ball of radius 3/2 centered at the origin. This proves
the lemma.

Lemma 2.5. Let Σ be a maximal 1/2-net of {x ∈ Cn : ‖x‖2 = 1}. Then for any λ > 0, we
have

P(‖M‖ > λ) ≤ P

(⋃
y∈Σ

{‖My‖2 > λ/2}

)
.

Proof. Let x ∈ Cn with ‖x‖2 = 1 such that ‖M‖ = ‖Mx‖2. By maximality, there exists
y ∈ Σ such that ‖x− y‖2 < 1/2. Therefore,

‖Mx‖2 − ‖My‖2 ≤ ‖M(x− y)‖2 ≤ ‖M‖‖x− y‖2 < ‖M‖/2.

Rearranging, we have ‖My‖2 > ‖M‖/2. If ‖M‖ > λ, then ‖My‖2 > λ/2 for some y ∈ Σ,
and this completes the proof.

We will continue next time.
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