1 Tracy-Widom distribution

We saw that the largest eigenvalue (in magnitude) of a Hermitian Wigner matrix is around $2 \sqrt{n}$. In fact, under some assumptions, we can even show that there is a central limit theorem. For simplicity we will consider only GUE.

Let $\operatorname{Ai}(x)$ denote the Airy function which is the unique solution of the Airy equation with prescribed asymptotics

$$
\operatorname{Ai}^{\prime \prime}(x)=x \mathrm{Ai}(x), \quad \mathrm{Ai}(x) \sum \frac{e^{-\frac{2}{3} x^{3 / 2}}}{2 \sqrt{\pi} x^{1 / 4}} \quad \text { as } x \rightarrow+\infty
$$

Let $u(x)$ be the unique monotone decreasing solution to the Painlevé II equation with asymptotics

$$
u^{\prime \prime}(x)=2(u(x))^{3}+x u(x), \quad u(x) \sim \mathrm{Ai}(x) \quad \text { as } x \rightarrow+\infty .
$$

This u also satisfies

$$
u(x) \sim-\sqrt{\frac{-x}{2}}\left(1+O\left(x^{-2}\right)\right) \quad \text { as } x \rightarrow-\infty .
$$

Therefore, the function

$$
F(x):=\exp \left(-\int_{x}^{\infty}(y-x)(u(y))^{2} \mathrm{~d} y\right)
$$

defines a distribution function, called the Tracy-Widom distribution.
Theorem 1.1. Let $\lambda_{n}(M)$ be the largest eigenvalue of an $n \times n$ GUE matrix. Then for all $x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\left(\lambda_{n}(M)-2 \sqrt{n}\right) n^{1 / 6} \leq x\right)=F(x)
$$

An interesting fact is that this distribution appears in many problems in probability, and they look unrelated to random matrices at first glance. Here we will introduce some of them.

2 Ulam's problem

Consider the symmetric group S_{n} and let $\pi \in S_{n}$. For $i_{1}<i_{2}<\cdots<i_{k}$, we say that $\pi\left(i_{1}\right), \ldots, \pi\left(i_{k}\right)$ is an increasing subsequence of π of length k if $\pi\left(x_{1}\right)<\cdots<\pi\left(i_{k}\right)$. Let $\ell_{n}(\pi)$ denote the maximal length of all increasing subsequence of π. An increasing subsequence of π of length $\ell_{n}(\pi)$ is called a longest increasing subsequence of π. For example, for the permutation

$$
\pi=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 1 & 3 & 2 & 4
\end{array}\right)
$$

134 and 124 are longest increasing subsequences of π. We will pick a permutation uniformly at random from S_{n}, how does the corresponding random variable ℓ_{n} behave? Surprisingly, it turns out that it behaves like the largest eigenvalue of GUE.

Theorem 2.1. For any $x \in \mathbb{R}$,

$$
\lim _{n \rightarrow \infty} \mathbf{P}\left(\frac{\ell_{n}(\pi)-2 \sqrt{n}}{n^{1 / 6}} \leq x\right)=F(x)
$$

3 Last-passage percolation

Consider the integer lattice \mathbb{Z}^{2}. Let $\left(t_{x}\right)_{x \in \mathbb{Z}^{2}}$ be a family of i.i.d. random variables. An oriented path γ with vertices x_{0}, \ldots, x_{n} has the property that all coordinates of x_{i} are no larger than those of x_{i+1}. For an oriented path γ, we define the passage time $T(\gamma)=$ $\sum_{x \in \gamma \backslash\left\{x_{0}\right\}} t_{x}$. Finally, we define the last-passage time between x and y by

$$
T(x, y)=\max \{T(\gamma): \gamma \text { is an oriented path from } x \text { to } y\}
$$

Of course, this only makes sense when there is an oriented path from x to y. Again, this model is related to Tracy-Widom distribution.

Theorem 3.1. Suppose that t_{x} is either exponentially distributed with parameter 1 or geometrically distributed with parameter p. Then for all $x \in \mathbb{R}$,

$$
\lim _{m, n \rightarrow \infty, m / n \rightarrow \alpha \in(0,1)} \mathbf{P}\left(\frac{T((0,0),(m, n))-g(m, n)}{\sigma(m, n)} \leq x\right)=F(x)
$$

where

$$
g(m, n)= \begin{cases}(\sqrt{m}+\sqrt{n})^{2} & \text { if } t_{x} \text { is exponential } \\ \frac{2 \sqrt{m n p}+(m+n) p}{1-p} & \text { if } t_{x} \text { is geometric }\end{cases}
$$

and

$$
\sigma(m, n)= \begin{cases}\frac{(\sqrt{m}+\sqrt{n})^{4 / 3}}{(m n)^{1 / 6}} & \text { if } t_{x} \text { is exponential, } \\ \frac{p^{1 / 6}(\sqrt{m}+\sqrt{n p})^{2 / 3}(\sqrt{n}+\sqrt{m p})^{2 / 3}}{(1-p)(m n)^{1 / 6}} & \text { if } t_{x} \text { is geometric. }\end{cases}
$$

3.1 TASEP

There are some models that are equivalent to the last-passage percolation. We will describe one of them, TASEP.

The total asymmetric simple exclusion process (TASEP) is an important stochastic interacting particle systems. At any time, each site $j \in \mathbb{Z}$ is either occupied by a particle or is empty. Let $\eta(t)=\left\{\eta_{j}(t)\right\}_{j \in \mathbb{Z}}$ be defined by $\eta_{j}(t)=1$ if site j has a particle at time t and 0 otherwise. Particles can jump to the site on the right if the site on the right is empty. When the right site is empty, a jump is performed after an exponential waiting time with mean 1. All jumps are independent of each other.

Suppose that at each site $j \in \mathbb{Z}$ with $j \leq 0$, there sits a particle at time 0 . The particle at site 0 is allowed to move without any restriction, but other particles may sometimes be blocked.

TASEP is related to the last-passage percolation for the following reason. Consider lastpassage percolation with exponential weights. The procession of the first particle in TASEP
is the same as last-passage time from $(0,0)$ along the x-direction. For the second level (that is, $y=1$), the number of sites reached in last-passage percolation corresponds to the number of steps the second particle moved in TASEP. In general, the n-th step of the k-th particle in TASEP corresponds to the site $(n-1, k)$ being reached from $(0,0)$. This shows why these two models are equivalent. In fact, the formula of g (the exponential case) in Theorem 3.1 was actually obtained using TASEP.

References

[1] Baik, Jinho; Deift, Percy; Suidan, Toufic. Combinatorics and random matrix theory. Graduate Studies in Mathematics, 172. American Mathematical Society, Providence, RI, 2016. xi+461 pp. ISBN: 978-0-8218-4841-8

