1 Tracy-Widom distribution

We saw that the largest eigenvalue (in magnitude) of a Hermitian Wigner matrix is around
2y/n. In fact, under some assumptions, we can even show that there is a central limit
theorem. For simplicity we will consider only GUE.

Let Ai(x) denote the Airy function which is the unique solution of the Airy equation with
prescribed asymptotics
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A" (z) = zAi(z), Ai(x) Z W as r — +oo.

Let u(z) be the unique monotone decreasing solution to the Painlevé II equation with asymp-
totics
u’(z) = 2(u(z))? + zu(z), u(z) ~ Ai(z) as x — +oo.

This u also satisfies
u(x) ~ —4/ —735(1 +0(z7%) asx — —oo0.

Pl =ew (= [ o)) a)
defines a distribution function, called the Tracy-Widom distribution.

Theorem 1.1. Let A\, (M) be the largest eigenvalue of an n x n GUE matriz. Then for all
r € R,

Therefore, the function

Tim P((A, (M) — 2v/n)nt/S < z) = F(2).

An interesting fact is that this distribution appears in many problems in probability, and
they look unrelated to random matrices at first glance. Here we will introduce some of them.

2 Ulam’s problem

Consider the symmetric group S, and let 7 € S,. For i1 < iy < --- < i, we say that
m(i1), ..., (i) is an increasing subsequence of 7 of length k if m(z1) < --- < m(iy). Let £, ()
denote the maximal length of all increasing subsequence of 7. An increasing subsequence
of m of length ¢,(m) is called a longest increasing subsequence of 7. For example, for the

permutation
(1 2 3 4 5
TT\5 132 4)

134 and 124 are longest increasing subsequences of 7. We will pick a permutation uniformly
at random from S,,, how does the corresponding random variable ¢,, behave? Surprisingly,
it turns out that it behaves like the largest eigenvalue of GUE.

Theorem 2.1. For any x € R,

lim P <M < x> ~ F(z).
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3 Last-passage percolation

Consider the integer lattice Z%. Let (t,).ezz be a family of i.i.d. random variables. An
oriented path v with vertices xy,...,x, has the property that all coordinates of x; are no
larger than those of x;. ;. For an oriented path v, we define the passage time T'(y) =
Y e N\ {ao} Lo Finally, we define the last-passage time between x and y by

T(x,y) = max{T'(7) : 7y is an oriented path from z to y}.

Of course, this only makes sense when there is an oriented path from x to y. Again, this
model is related to Tracy-Widom distribution.

Theorem 3.1. Suppose that t, is either exponentially distributed with parameter 1 or geo-
metrically distributed with parameter p. Then for all x € R,

: T((O’O)7 (m,n)) — g(m7n) _
lim (0,1)P ( < m) = F(x),

m,n—o00,m/n—a€ a(m, 7’L)
where
(v/m + /n)? if t, is exponential,
glm,n) = 2,/mnp + (m+n)p
if t, is geometric,
l=p

and ) s

(v + vn) if t, is exponential,

(mn)1/6
o(m,n) =
1/6 + np)2/3 + Jmp)2/3
Prym P (vn mp) if t, is geometric.
\ (1= p)(mn)'/

3.1 TASEP

There are some models that are equivalent to the last-passage percolation. We will describe
one of them, TASEP.

The total asymmetric simple exclusion process (TASEP) is an important stochastic in-
teracting particle systems. At any time, each site j € 7Z is either occupied by a particle or is
empty. Let n(t) = {n;(t)};ez be defined by n;(t) = 1 if site j has a particle at time ¢ and 0
otherwise. Particles can jump to the site on the right if the site on the right is empty. When
the right site is empty, a jump is performed after an exponential waiting time with mean 1.
All jumps are independent of each other.

Suppose that at each site j € Z with j < 0, there sits a particle at time 0. The particle
at site 0 is allowed to move without any restriction, but other particles may sometimes be
blocked.

TASEP is related to the last-passage percolation for the following reason. Consider last-
passage percolation with exponential weights. The procession of the first particle in TASEP
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is the same as last-passage time from (0, 0) along the z-direction. For the second level (that
is, y = 1), the number of sites reached in last-passage percolation corresponds to the number
of steps the second particle moved in TASEP. In general, the n-th step of the k-th particle
in TASEP corresponds to the site (n — 1, k) being reached from (0, 0). This shows why these
two models are equivalent. In fact, the formula of g (the exponential case) in Theorem 3.1
was actually obtained using TASEP.
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