
1 Noncommutative probability

In measure theory, the underlying measure space Ω plays an important role, with the mea-
surable sets and functions viewed as being attached to that space. In contrast, in probability,
the role of events and their probabilities are more important, and the sample space Ω itself
is usually an abstract space, which has less important role. In particular, one cares more
about the random variables and σ-algebras than the sample space itself.

These can be encoded by algebraic structures, which leads to an abstract definition of
probability space.

Definition 1.1. A noncommutative probability space is a pair (A,E), where A is a complex
algebra with a unit, and E : A → C is a linear map such that E(1A) = 1.

Example. 1. For a given probability space (Ω,Σ,P), (L∞(Ω),E) is a noncommutative
probabiltiy space,

2. A =
⋂

1≤p<∞ L
p(Ω) with E being the expected value,

3. A = Mn(C) with E(T ) = 1
n
tr(T ),

4. A = Mn(C), fix a unit vector v ∈ Cn with ‖v‖2 = 1 and define E(T ) = v∗Tv. Then
(A,E) is also a noncommutative probability space.

Definition 1.2. Let (A,E) be a noncommutative probability space. We say a ∈ A has a
distribution µ, where µ is a probability measure on R, if E(ak) =

∫∞
−∞ t

k dµ(t) for all k ∈ N.

Note that even in the classical case, µ may not be uniquely determined by the moments,
so it might actually be better to view a distribution as a sequence of moments instead of a
probability measure in this case.

Example. Consider (Mn(C), τn), where τn(T ) = 1
n
tr(T ). Let T ∈ Mn(C) be self-adjoint.

Then there exist an orthonormal basis e1, . . . , en in Cn and λ1, . . . , λn ∈ R such that Tej =
λjej, j = 1, . . . , n. We have

τn(T k) =
1

n

n∑
j=1

(T k)j,j =
1

n

n∑
j=1

λkj =

∫ ∞
−∞

λk dµ(λ),

where µ = 1
n

∑n
j=1 δλj . That is, T has distribution µ.

We can construct the space of random matrices as follows. Given a probability space
(Ω,Σ,P) and n ∈ N, we define

A = Mn

( ⋂
1≤p<∞

Lp(Ω)

)
.

For X = [xi,j] ∈ A, xi,j : Ω→ C are random variables with E|xi,j|k <∞ for all k ∈ N. Define
ϕ : A → C by ϕ(X) = E(τn(X)) = 1

n

∑n
j=1

∫
Ω
xj,j dP. Then (A, ϕ) is a noncommutative

probability space.



Suppose that X(ω) = X(ω)∗ for all ω. Then

ϕ(Xk) = E(τn(X(ω)k)) = E

(∫ ∞
−∞

λk dµω(λ)

)
,

where µω is the empirical eigenvalue distribution of X(ω). Then a distribution of X is given
by Eµω.

2 Group algebras

Now we will consider an important example of a noncommutative probability space. Let
G be a group and let C[G] be the group algebra of G. C[G] is a vector space with G as a
basis. For x ∈ C[G], write x =

∑
g∈G xgg, where xg ∈ C and only finitely many of them are

nonzero. The product of x and y, where x, y ∈ C[G], is defined to be

xy =

(∑
g∈G

xgg

)(∑
h∈G

yhh

)
=
∑
g,h∈G

xgyhgh

=
∑
k∈G

(∑
g∈G

xgyg−1k

)
k.

One can also define a norm ‖x‖1 =
∑

g∈G |xg| and consider the completion of C[G] under
this norm:

`1(G) =

{∑
g∈G

xgg : xg ∈ C,
∑
g∈G

|xg| <∞

}
.

One can show that for all x, y ∈ `1(G), ‖xy‖1 ≤ ‖x‖1‖y‖1. Note that the unit e of G is also
a multiplicative unit in C[G] and `1(G). We define τ : C[G]→ C (or τ : `1(G)→ C) by

τ

(∑
g∈G

xgg

)
= xe.

Let’s consider a particular case, where G is isomorphic to Z. Write G = {gn : n ∈ Z}.
Then one can associate

∑
n∈Z αng

n ∈ `1(G) with a function (in fact, Fourier series) f(t) =∑
n∈Z αne

2πint on T = R/Z, the dual group of Z. Then the expected value τ(
∑

n∈Z αng
n) in

this case can be computed by
∫ 1

0
f(t) dt.

2.1 An application: random walk on G

Let G be a group and let g1, g2, . . . , gk ∈ G. Define a sequence of random variables Xn : Ω→
G by X0 = e, and

P(Xn+1 = Xngj) =
1

2k
, P(Xn+1 = Xng

−1
j ) =

1

2k
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for all j = 1, 2, . . . , k. Of interest are the numbers pn = P(Xn = e), the return probabilities.
Define a ∈ C[G] by a = 1

2k

∑k
j=1(gj+g

−1
j ). Then we have pn = τ(an) for all n = 0, 1, 2, . . .,

because if we write S = {g1, . . . , gk, g
−1
1 , . . . , g−1

k }, then

an =

(
1

2k

)n ∑
hj∈S

h1h2 · · ·hn,

and hence

τ(an) =

(
1

2k

)n
#{(h1, . . . , hn) : hj ∈ S, h1h2 · · ·hn = e}.

It is easy to see that the right hand side is exactly pn.
Let’s consider a simpler case, G being isomorphic to Z. Let S = {g, g−1} with g 6= e. As

we have seen before, we can associate a = 1
2
(g+g−1) with f(t) = 1

2
(e2πit+e−2πit) = cos(2πt).

Then τ(an) is given by
∫ 1

0
cosn(2πt) dt, which implies p2n =

(
2n
n

)
1

22n
.

3 Independence

One of the most important notion in probability theory is independence. We will also define
independence in noncommutative probability.

Definition 3.1. Let (A, τ) be a noncommutative probability space. Let A1,A2 ⊆ A be two
subalgebras such that e ∈ A1 ∩ A2. We say that A1 and A2 are classically independent if

1. a1a2 = a2a1 if a1 ∈ A1, a2 ∈ A2,

2. if a1 ∈ A1 and a2 ∈ A2 with τ(a1) = τ(a2) = 0, then τ(a1a2) = 0.

Remark. Note that if A1 and A2 are classically independent, then if a1 ∈ A1 and a2 ∈ A2,
one has τ(a1a2) = τ(a1)τ(a2) (by applying the definition to aj − τ(aj)e). So this is indeed
the same as the independence we saw in classical probability.

Let’s see an example of classical independence with a nonclassical example. Let G =
G1 ×G2. We can write

G = {g1g2 : g1 ∈ G1, g2 ∈ G2},

with g1g2 = g2g1 if g1 ∈ G1 and g2 ∈ G2, and g1g2 = e if and only if g1 = e and g2 = e.
In this case, C[G1],C[G2] ⊆ C[G], and it is easy to see that C[G1] and C[G2] are classically
independent. In this case, if we fix g1 ∈ G1 and g2 ∈ G2 and consider a random walk with
these elements, then a = 1

4
(g1 + g−1

1 + g2 + g−1
2 ) = 1

4
(g1 + g−1

1 ) + 1
4
(g2 + g−1

2 ) is a sum of
independent random variables.

In classical independence, some commutativity is required, which might not be very
useful in the setting of noncommutative probability. Let’s again consider the group algebras
as a motivating example. Above we saw that the Cartesian product of groups give some
commutativity between the two groups, and hence classical independence between the two
group algebras. However, instead of Cartesian product, one can also consider the free product
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of two groups, which can be seen as the most “general” group that is generated by the
elements of the two groups.

More precisely, for groups G1 and G2, a word in G1 and G2 is a product of the form
s1s2 · · · sn, where each sj is either an element of G1 of an element of G2. Such a word can
be reduced by removing the identity elements or reducing a pair of the form g1h1 by its
product in G1 or a pair of the form g2h2 by its product in G2. Then every reduced word
is an alternating product of elements of G1 and elements of G2. The free product G1 ∗ G2

is the group with elements being the reduced words in G1 and G2, under the operation
of concatenation of words followed by reduction. In this case, C[G1] and C[G2] are again
subalgebras of C[G1 ∗G2]. This motivates the notion of free independence:

Definition 3.2. Let (A, τ) be a noncommutative probability space. Let A1,A2 ⊆ A be two
subalgebras such that e ∈ A1 ∩A2. We say that A1 and A2 are freely independent if for any
a1, a2, . . . , an, where ai ∈ Aji, ji 6= ji+1 for i = 1, 2, . . . , n − 1 with τ(ai) = 0 for all i, then
τ(a1a2 · · · an) = 0.

Note that under this definition, if G = G1 ∗ G2, then C[G1] and C[G2] are freely inde-
pendent.

Proof. Write ai =
∑

g∈Gji
\{e} α

(i)
g g. Then

a1a2 · · · an =
∑

g1,...,gn

α(1)
g1
α(2)
g2
· · ·α(n)

gn g1g2 · · · gn,

where the sum is over gi ∈ Gji \{e}, i = 1, . . . , n. The term g1g2 · · · gn cannot cancel, because
each consecutive elements belong to different algebras. Therefore, τ(a1a2 · · · an) = 0.

3.1 Comparing classical independence and free independence

For x ∈ A, write Ax = {p(x) : p is a polynomial}, the algebra generated by x.
First consider the case Ax and Ay are classically independent. In this case, the moment

of x+ y can be computed by

τ((x+ y)n) =
n∑
j=0

(
n

j

)
τ(xjyn−j)

=
n∑
j=0

(
n

j

)
τ(xj)τ(yn−j)

= τ(xn) + τ(yn) +Qn(τ(x), τ(x2), . . . , τ(xn−1), τ(y), τ(y2), . . . , τ(yn−1))

for some polynomial Qn. For α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ Cn, define

α ∗n β = (α1 + β1, α2 + β2 +Q2(α1, β1), . . . , αn + βn +Qn(α1, . . . , αn−1, β1, . . . , βn−1)).

Then ∗n : Cn × Cn → Cn is commutative, associative, and has a unit (namely the zero
vector). Moreover, by solving equations, one can see that α ∗n β = 0 is possible, and so
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inverse exists. As an algebraic group, there are not too many possibilities, and it turns out
that (Cn, ∗n) ∼= (Cn,+). Therefore, there exists a sequence of numbers {cn(x)}∞n=1, called
the cumulants, such that

(τ(x), τ(x2), . . . , τ(xn)) 7→ (c1(x), c2(x), . . . cn(x))

is an isomorphism from Cn to Cn. In fact, we have

τ(xn) =
∑

π partition of {1,...,n}

∏
B block of π

c|B|(x).

For example, when n = 4, there are four ways to partition {1, 2, 3, 4} into a 3-element set
and a 1-element set, three ways to partition into two 2-element sets, etc., we have

τ(x4) = c4(x) + 4c3(x)c1(x) + 3c2(x)2 + 6c2(x)c1(x)2 + c1(x)4.

Now, consider the case that Ax and Ay are freely independent. Then

τ((x+ y)n) =
∑

τ(a1a2 · · · an), a1, . . . , an ∈ {x, y}.

So we would like to know what τ(xi1yj1xi2yj2 · · ·xikyik) is. Using

τ((xi1 − τ(xi1)e) · · · (yjk − τ(yjk)e)) = 0

and induction, one can show that

τ((x+ y)n) = τ(xn) + τ(yn) +Q′n(τ(x), τ(x2), . . . , τ(xn−1), τ(y), τ(y2), . . . , τ(yn−1))

for some polynomial Q′n (which is different from Qn unless n = 1, 2). Similarly, one can
define

α�n β = (α1 + β1, α2 + β2 +Q′2(α1, β1), . . . , αn + βn +Q′n(α1, . . . , αn−1, β1, . . . , βn−1)).

This �n is commutative, associative (which is not obvious), with unit being the zero vector,
and has inverses. Therefore, there is an isomorphism (Cn,�n)→ (Cn,+), and we write

(τ(x), τ(x2), . . . , τ(xn)) 7→ (k1(x), k2(x), . . . , kn(x)).

These kj’s are called the free cumulants of x. It is known that

τ(xn) =
∑

π non-crossing partition of {1,...,n}

∏
B block of π

k|B|(x).

For example, when n = 4, there are four ways to partition {1, 2, 3, 4} into a 3-element set
and a 1-element set, three ways to partition into two 2-element sets (but only two of them
are non-crossing), etc., we have

τ(x4) = k4(x) + 4k3(x)k1(x) + 2k2(x)2 + 6k2(x)k1(x)2 + k1(x)4.

Note that the formula the almost the same as that in the classical case except the k2(x)2

term.
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4 Free central limit theorem

Theorem 4.1. Let (A, τ) be a noncommutative probability space, and let {xn}∞n=1 be freely
independent identically distributed (f.i.d.) random variables with τ(xn) = 0, τ(x2

n) = 1.
Define yn = (x1 + · · ·+ xn)/

√
n. Then τ(ykn)→ Ck/2 as n→∞, where Ck/2 is the (k/2)-th

Catalan number (with Ck/2 = 0 if k is odd).

As we have seen, the moments of the semicircle law are exactly the Catalan numbers.
Therefore, it means that sum of f.i.d. random variables converges (after suitable rescaling)
in distribution to the semicircle law.

In the classical case, the central limit theorem can be proved by the following fact: if
X, Y ∼ N(0, 1) are independent, then (X + Y )/

√
2 has the same distribution as X. Why

would this help? Because in this case, we have cn((X + Y )/
√

2) = cn(X), and so by
independence cn(X/

√
2) + cn(Y/

√
2) = cn(X), which implies 2(1/

√
2)ncn(X) = cn(X). This

forces cn(X) = 0 if n 6= 2, and it is easy to see that c2(X) = Var(X) = 1. Now, if X1, . . . , Xn

are i.i.d. with EX = 0 and Var(X) = 1 (and under some suitable moment conditions), we
see that cm((X1 + · · ·+Xn)/

√
n) = n/(

√
n)mcm(X1), which is 0 when m = 1, 1 when m = 2,

and goes to 0 as n→∞ when m ≥ 3, which are the cumulants of a standard Gaussian, and
this proves the central limit theorem.

Therefore, to prove the free central limit theorem, it suffices to construct f.i.d. variables
X, Y such that (X+Y )/

√
2 has the same distribution as X with τ(X) = 0, τ(X2) = 1. The

same calculation will apply with cumulants c replaced by the free cumulants k.

4.1 Fock space

Let V be a finite dimensional Euclidean space. We define the Fock space of V by

T (V ) =
∞⊕
n=0

V ⊗n,

where V ⊗0 = RΩ, and Ω ∈ V is a fixed unit vector called the vacuum vector. Let A =
L(T (V )), the space of linear operators on T (V ), and we define τ : A → C by τ(X) =
〈XΩ,Ω〉.

For a unit vector v ∈ V , we define the creation operator Cv : T (V )→ T (V ) by Cv(w) =
v ⊗ w. For example, say w = 4Ω + 3w1 + 5w1 ⊗ w2 + 3w2 ⊗ w3, Cv(w) = 4v + 3v ⊗ w1 +
5v⊗w1⊗w2 + 3v⊗w2⊗w3. We also define the destruction operator Dv by Dv(Ω) = 0, and
Dv(w1 ⊗ w2 ⊗ · · · ⊗ wn) = 〈w1, v〉w2 ⊗ · · · ⊗ wn. Define Xv = Cv +Dv. Note that

τ(Xv) = τ(Cv) + τ(Dv) = 〈CvΩ,Ω〉+ 〈DvΩ,Ω〉 = 〈v,Ω〉+ 0.

Since v is a tensor of order 1 and Ω is a tensor of order 0, 〈v,Ω〉 = 0, and thus τ(Xv) = 0.
Also,

τ(X2
v ) = 〈C2

vΩ,Ω〉+ 〈CvDvΩ,Ω〉+ 〈DvCvΩ,Ω〉+ 〈D2
vΩ,Ω〉

= 〈DvCvΩ,Ω〉 = 〈Ω,Ω〉 = 1.
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For general n, we have

τ(Xn
v ) =

∑
aj∈{Cv ,Dv}

τ(a1a2 · · · an).

When n is odd, it is not difficult to see that the summand is always 0. When n is even, the
calculation for n = 2 suggests that τ(a1a2 · · · an) is not 0 only when the number of Cv’s is
the same as the number of Dv’s, and there are always more creations than destruction when
one reads the string of right to left. If one recalls the definition of Dyck word or Dyck path,
then we have τ(Xn

v ) = Ck, where n = 2k. Therefore, the distribution of Xv is exactly the
semicircle law.

Proposition 4.2. If v1, v2 ∈ V and 〈v1, v2〉 = 0, then A1 is freely independent of A2, where
Aj is the algebra generated by Cvj and Dvj , j = 1, 2.

Proof. Note that since v1 ⊥ v2, we have Dv1Cv2 = 0. Also, note that Dv1Cv1 is the identity,
and so A1 consists of linear combinations of elements of the form Cα

v1
Dβ
v1

, α, β ∈ {0, 1, 2 . . .}.
Moreover, τ(Cα

v1
Dβ
v1

) = 〈Cα
v1
Dβ
v1

Ω,Ω〉, and this is nonzero only when α = β = 0, and in this
case 〈C0

v1
D0
v1

Ω,Ω〉 = 1.
To prove free independence, consider a product Y1, Y2, . . . , Yn, Yj ∈ Aij , ij ∈ {1, 2} and

ij 6= ij+1 for j = 1, 2, . . . , n − 1 and τ(Yj) = 0. We need to show τ(Y1Y2 · · ·Yn) = 0. By
linearity, we may (and do) restrict to the case in which Yij has only one term (that is,

Yij = C
αj
vij
D
βj
vij

with αj + βj > 0). Note that

Y1Y2 · · ·Yn = Cα1
vi1
Dβ1
vi1
Cα2
vi2
Dβ2
vi2
· · ·Cαn

vin
Dβn
vin
.

Recall that when v1 ⊥ v2, Dv1Cv2 = 0. Therefore, for the above product being nonzero, it
has to be of the form

Cα1
vi1
· · ·Cαj

vij
Dβj+1
vij+1
· · ·Dβn

vin

for some j ∈ {1, . . . , n}. However, in this case we still have τ(Y1Y2 · · ·Yn) = 0. This proves
the proposition.

The free central limit theorem will be proved by establishing the following proposition.

Proposition 4.3. If v1, v2 ∈ V and 〈v1, v2〉 = 0, then (Xv1 +Xv2)/
√

2 and Xv1 has the same
distribution.

Proof. Write v = (v1 + v2)/
√

2. Since v1 ⊥ v2, v is also a unit vector. Moreover,(
Cv1 + Cv2√

2

)
(w) =

v1 ⊗ w + v2 ⊗ w√
2

= v ⊗ w = Cv(w).

Similarly, (Dv1 + Dv2)/
√

2 = Dv. Therefore, (Xv1 + Xv2)/
√

2 = Xv. Since we saw that the
law of Xv is semicircular, we are done.

7



5 More connection to random matrices

From what we did in this semester and what we saw above, we see that Wigner random ma-
trices converges in distribution (in the sense of noncommutative probability) to the semicircle
law. It has nothing to do with the free central limit theorem, though.

Yet, random matrices are deeply related to free independence.

Definition 5.1. A sequence of random variables Xn,1, . . . , Xn,k in a noncommutative prob-
ability space (An, τn) is asymptotically free independent if

τn((P1(Xn,i1)− τn((P1(Xn,i1))e) · · · (Pm(Xn,im)− τn((Pm(Xn,im))e))→ 0

as n → ∞, for any polynomials P1, . . . , Pm, and i1, . . . , im ∈ {1, . . . , k}, ij 6= ij+1 for all
j = 1, . . . ,m− 1.

Independent families of random matrices are asymptotically free. A large random matrix
will correlate with itself (for instance, tr(M∗M) is large); however, if we insert an independent
random matrix N with zero trace, then the correlation will be largely destroyed (for instance,
tr(M∗NM) is usually small). In fact, we have the following.

Theorem 5.2. Let Mn,1, . . . ,Mn,k be independent n × n Wigner matrices, where the coef-
ficients all have uniformly bounded m-th moments for all m. Then the random matrices

1√
n
Mn,1, . . . ,

1√
n
Mn,k are asymptotically freely independent.

This can be proved, again, by analyzing the moments carefully.
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